FLUIDOS EN REPOSO Y EN MOVIMIENTO

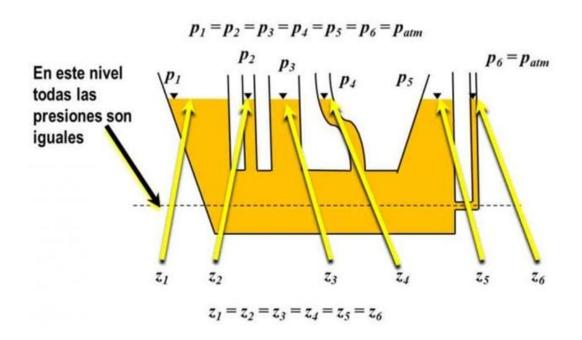
* Un fluido es una sustancia que puede escurrir fácilmente y que puede cambiar de forma debido a la acción de pequeñas fuerzas. Por lo tanto el término fluido incluye a los líquidos y gases.

HIDROSTÁTICA

- * los líquidos en reposo
- * Para el estudio de la hidrostática es indispensable el conocimiento de dos cantidades: la presión y la densidad.

Densidad

La densidad es una propiedad intensiva de los cuerpos materiales que nos indica cual es la concentración de materia en los mismos


$$\delta = \frac{m}{V}$$

Si en lugar de la masa de un cuerpo se considera al peso, se tiene el denominado "peso específico":

$$PE = \frac{peso}{volumen} = \frac{m.g}{V} = \delta. g$$

Presión

Es una magnitud escalar, que se define como el cociente entre la fuerza y la superficie sobre la que está aplicada la misma.

Presión hidrostática

Es la presión que soportan los puntos ubicados por debajo de la superficie de un líquido en reposo.

Ph=
$$\delta$$
.g.h
Ph=PE.H

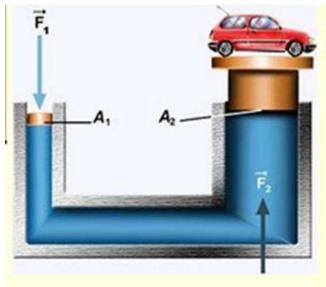
Si encima del líquido hay gas entonces:

Si el recipiente que contiene al líquido está abierto entonces la presión por encima de los líquidos es la presión atmosférica, entonces:

$$P \text{ total} = Ph + P \text{ atm}$$

Variaciones de la presión con la altura o profundidad

Si dado un punto A en el interior de un fluído en reposo, deseamos calcular la presión en un punto B ubicado a una profundidad h respecto de A, se cumple la siguiente relación:


PB = PA + δ fluido . g . h al descender la presión aumenta.

En cambio la presión A, que encuentra una altura h por encima de B, se calcula:

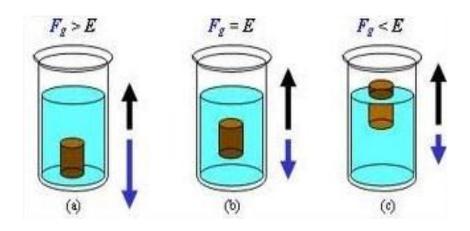
PA=PB - δfluido . g . h al subir la presión disminuye.

PRINCIPIO DE PASCAL

Una presión externa que se ejerce sobre un fluído, en un recipiente cerrado, aumenta la presión en todos los puntos en una cantidad igual a la presión aplicada.

Las presiones en los 2 émbolos son iguales:

$$P_2 = P_1$$


$$\frac{F_2}{A_2} = \frac{F_1}{A_1}$$

$$F_2 = F_1 \frac{A_2}{A_2}$$

PRINCIPIO DE ARQUÍMEDES

Un cuerpo sumergido parcial o totalmente en un fluido experimenta una fuerza de empuje hacia arriba independiente de la forma del cuerpo e igual al peso del fluido desplazado.

Empuje = V sumergido . δfluído . g

